Main Article Content

Abstract

Nanotechnology can revolutionize the sensor industry by introducing specific nanomaterials to work as sensing elements. Graphene, a two-dimensional carbon allotrope with exceptional electrical and mechanical properties, has emerged as a promising material for developing high-performance pressure sensors. Graphene-based pressure sensors offer significant advantages over traditional sensors, including high sensitivity, wide dynamic range, fast response time, and flexibility. This paper aims to deliver a review on the fundamental mechanisms underlying graphene-based pressure sensors, which includes piezoresistive, capacitive, and field-effect transistor (FET). Recent advancements in graphene-based pressure sensors have opened up new possibilities in various fields, including healthcare, electronics, and robotics. Here, we will highlight these emerging applications and explore the potential future developments of this technology.

Keywords

Graphene Pressure Sensor Flexible Pressure Sensor Sensitivity

Article Details

How to Cite
Al-mashaal, A. K. E. (2024). ELECTROMECHANICAL PRESSURE SENSORS BASED ON GRAPHENE: A REVIEW. International Journal Multidisciplinary (IJMI), 1(4), 16–27. https://doi.org/10.61796/ijmi.v1i4.230

References

  1. T. Seesaard, C. Wongchoosuk, Flexible and Stretchable Pressure Sensors: From Basic Principles to State-of-the-Art Applications, Micromachines (Basel) 14 (2023) 1638. https://doi.org/10.3390/mi14081638.
  2. S. Jena, A. Gupta, Review on pressure sensors: a perspective from mechanical to micro-electro-mechanical systems, Sensor Review 41 (2021) 320–329. https://doi.org/10.1108/SR-03-2021-0106.
  3. An Overview of Pressure Sensors | Same Sky, (n.d.). https://www.sameskydevices.com/blog/an-overview-of-pressure-sensors (accessed November 7, 2024).
  4. F. Ji, Z. Sun, T. Hang, J. Zheng, X. Li, G. Duan, C. Zhang, Y. Chen, Flexible piezoresistive pressure sensors based on nanocellulose aerogels for human motion monitoring: A review, Composites Communications 35 (2022) 101351. https://doi.org/10.1016/J.COCO.2022.101351.
  5. A.S. Fiorillo, C.D. Critello, S.A. Pullano, Theory, technology and applications of piezoresistive sensors: A review, Sens Actuators A Phys 281 (2018) 156–175. https://doi.org/10.1016/j.sna.2018.07.006.
  6. C. Zhi, S. Shi, Y. Si, B. Fei, H. Huang, J. Hu, Recent Progress of Wearable Piezoelectric Pressure Sensors Based on Nanofibers, Yarns, and Their Fabrics via Electrospinning, Adv Mater Technol 8 (2023) 2201161. https://doi.org/10.1002/ADMT.202201161.
  7. N. Nishiyama, K. Amiya, A. Inoue, Recent progress of bulk metallic glasses for strain-sensing devices, Materials Science and Engineering: A 449–451 (2007) 79–83. https://doi.org/10.1016/J.MSEA.2006.02.384.
  8. R.B. Mishra, N. El-Atab, A.M. Hussain, M.M. Hussain, Recent Progress on Flexible Capacitive Pressure Sensors: From Design and Materials to Applications, Adv Mater Technol 6 (2021) 2001023. https://doi.org/10.1002/ADMT.202001023.
  9. Z. Mehmood, I. Haneef, F. Udrea, Material selection for optimum design of MEMS pressure sensors, Microsystem Technologies 26 (2020) 2751–2766. https://doi.org/10.1007/S00542-019-04601-1/FIGURES/5.
  10. X. Han, M. Huang, Z. Wu, Y. Gao, Y. Xia, P. Yang, S. Fan, X. Lu, X. Yang, L. Liang, W. Su, L. Wang, Z. Cui, Y. Zhao, Z. Li, L. Zhao, Z. Jiang, Advances in high-performance MEMS pressure sensors: design, fabrication, and packaging, Microsyst Nanoeng 9 (2023). https://doi.org/10.1038/S41378-023-00620-1.
  11. K.N. Bhat, Silicon Micromachined Pressure Sensors, J Indian Inst Sci 87 (2007) 115. https://journal.iisc.ac.in/index.php/iisc/article/view/197 (accessed November 17, 2024).
  12. P. Song, Z. Ma, J. Ma, L. Yang, J. Wei, Y. Zhao, M. Zhang, F. Yang, X. Wang, Recent Progress of Miniature MEMS Pressure Sensors, Micromachines 2020, Vol. 11, Page 56 11 (2020) 56. https://doi.org/10.3390/MI11010056.
  13. H.-P. Trah, J. Franz, J. Marek, Physics of semiconductor sensors, (1999) 25–36. https://doi.org/10.1007/BFB0107462.
  14. M. Liao, Y. Koide, Current Progress of Pressure Sensors for Harsh Environments Based on Wide-Bandgap Semiconductors, Recent Patents on Materials Science 3 (2010) 96–105. https://doi.org/10.2174/1874465611003020096.
  15. S. Žilionis, V. Stankevič, AlGaAs semiconductor pressure sensors, Sens Actuators A Phys 26 (1991) 295–299. https://doi.org/10.1016/0924-4247(91)87007-P.
  16. W.T. Guo, X.G. Tang, Z. Tang, Q.J. Sun, Recent Advances in Polymer Composites for Flexible Pressure Sensors, Polymers 2023, Vol. 15, Page 2176 15 (2023) 2176. https://doi.org/10.3390/POLYM15092176.
  17. O. Kanoun, A. Bouhamed, R. Ramalingame, J.R. Bautista-Quijano, D. Rajendran, A. Al-Hamry, Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors, Sensors 2021, Vol. 21, Page 341 21 (2021) 341. https://doi.org/10.3390/S21020341.
  18. L. Veeramuthu, M. Venkatesan, J.S. Benas, C.J. Cho, C.C. Lee, F.K. Lieu, J.H. Lin, R.H. Lee, C.C. Kuo, Recent Progress in Conducting Polymer Composite/Nanofiber-Based Strain and Pressure Sensors, Polymers 2021, Vol. 13, Page 4281 13 (2021) 4281. https://doi.org/10.3390/POLYM13244281.
  19. A. Sedighi, M. Montazer, Nanomaterials for Wearable, Flexible, and Stretchable Strain/Pressure Sensors, Nanotechnology in Electronics: Materials, Properties, Devices (2022) 155–206. https://doi.org/10.1002/9783527824229.CH6.
  20. L.T. Nhiem, D.T.Y. Oanh, N.H. Hieu, Strain/pressure sensors utilizing advanced nanomaterials, Vietnam Journal of Chemistry 62 (2024) 13–20. https://doi.org/10.1002/VJCH.202300236.
  21. D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, V. Yu, Experimental review of graphene, ISRN Condensed Matter Physics 2012 (2011) 1–56. https://doi.org/10.5402/2012/501686.
  22. A.R. Urade, I. Lahiri, K.S. Suresh, Graphene Properties, Synthesis and Applications: A Review, JOM 2022 75:3 75 (2022) 614–630. https://doi.org/10.1007/S11837-022-05505-8.
  23. Y.W. Sun, D.G. Papageorgiou, C.J. Humphreys, D.J. Dunstan, P. Puech, J.E. Proctor, C. Bousige, D. Machon, A. San-Miguel, Mechanical properties of graphene, Appl Phys Rev 8 (2021). https://doi.org/10.1063/5.0040578/1056728.
  24. A. D. Ghuge, A. R. Shirode, V. J. Kadam, Graphene: A Comprehensive Review, Curr Drug Targets 18 (2017) 724–733. https://doi.org/10.2174/1389450117666160709023425.
  25. Z. Zhang, Q. Liu, H. Ma, N. Ke, J. Ding, W. Zhang, X. Fan, Recent Advances in Graphene-Based Pressure Sensors: A Review, IEEE Sens J 24 (2024) 25227–25248. https://doi.org/10.1109/JSEN.2024.3419243.
  26. C. Soldano, A. Mahmood, E. Dujardin, Production, properties and potential of graphene, Carbon N Y 48 (2010) 2127–2150. https://doi.org/10.1016/j.carbon.2010.01.058.
  27. A.D. Smith, F. Niklaus, A. Paussa, S. Vaziri, A.C. Fischer, M. Sterner, F. Forsberg, A. Delin, D. Esseni, P. Palestri, M. Östling, M.C. Lemme, Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes, Nano Lett 13 (2013) 3237–3242. https://doi.org/10.1021/nl401352k.
  28. A.D. Smith, F. Niklaus, A. Paussa, S. Schröder, A.C. Fischer, M. Sterner, S. Wagner, S. Vaziri, F. Forsberg, D. Esseni, M. Östling, M.C. Lemme, Piezoresistive Properties of Suspended Graphene Membranes under Uniaxial and Biaxial Strain in Nanoelectromechanical Pressure Sensors, ACS Nano 10 (2016) 9879–9886. https://doi.org/10.1021/acsnano.6b02533.
  29. S.S. Kumar, B.D. Pant, Design principles and considerations for the “ideal” silicon piezoresistive pressure sensor: A focused review, Microsystem Technologies 20 (2014) 1213–1247. https://doi.org/10.1007/S00542-014-2215-7/METRICS.
  30. S.-E. Zhu, M. Krishna Ghatkesar, C. Zhang, G.C.A.M. Janssen, Graphene based piezoresistive pressure sensor, Appl Phys Lett 102 (2013). https://doi.org/10.1063/1.4802799.
  31. A.D. Smith, F. Niklaus, A. Paussa, S. Vaziri, A.C. Fischer, M. Sterner, F. Forsberg, A. Delin, D. Esseni, P. Palestri, M. Östling, M.C. Lemme, Electromechanical piezoresistive sensing in suspended graphene membranes, Nano Lett 13 (2013) 3237–3242. https://doi.org/10.1021/nl401352k.
  32. R.J. Dolleman, D. Davidovikj, S.J. Cartamil-Bueno, H.S.J. van der Zant, P.G. Steeneken, Graphene Squeeze-Film Pressure Sensors, Nano Lett 16 (2016) 568–571. https://doi.org/10.1021/acs.nanolett.5b04251.
  33. L.A. Kurup, C.M. Cole, J.N. Arthur, S.D. Yambem, Graphene Porous Foams for Capacitive Pressure Sensing, ACS Appl Nano Mater 5 (2022) 2973–2983. https://doi.org/10.1021/acsanm.2c00247.
  34. Y.-M. Chen, S.-M. He, C.-H. Huang, C.-C. Huang, W.-P. Shih, C.-L. Chu, J. Kong, J. Li, C.-Y. Su, Ultra-large suspended graphene as a highly elastic membrane for capacitive pressure sensors, Nanoscale 8 (2016) 3555–3564. https://doi.org/10.1039/C5NR08668J.
  35. J. Yang, S. Luo, X. Zhou, J. Li, J. Fu, W. Yang, D. Wei, Flexible, Tunable, and Ultrasensitive Capacitive Pressure Sensor with Microconformal Graphene Electrodes, ACS Appl Mater Interfaces 11 (2019) 14997–15006. https://doi.org/10.1021/acsami.9b02049.
  36. L.A. Kurup, C.M. Cole, J.N. Arthur, S.D. Yambem, Graphene Porous Foams for Capacitive Pressure Sensing, ACS Appl Nano Mater 5 (2022) 2973–2983. https://doi.org/10.1021/acsanm.2c00247.
  37. C. Berger, R. Phillips, A. Centeno, A. Zurutuza, A. Vijayaraghavan, Capacitive pressure sensing with suspended graphene–polymer heterostructure membranes, Nanoscale 9 (2017) 17439–17449. https://doi.org/10.1039/C7NR04621A.
  38. Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, J.-B. Xu, Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures, ACS Nano 11 (2017) 4507–4513. https://doi.org/10.1021/acsnano.6b08027.
  39. N. Yogeswaran, E.S. Hosseini, R. Dahiya, Graphene Based Low Voltage Field Effect Transistor Coupled with Biodegradable Piezoelectric Material Based Dynamic Pressure Sensor, ACS Appl Mater Interfaces 12 (2020) 54035–54040. https://doi.org/10.1021/acsami.0c13637.
  40. A. Nag, A. Mitra, S.C. Mukhopadhyay, Graphene and its sensor-based applications: A review, Sens Actuators A Phys 270 (2018) 177–194. https://doi.org/10.1016/j.sna.2017.12.028.
  41. J. Liu, S. Bao, X. Wang, Applications of Graphene-Based Materials in Sensors: A Review, Micromachines (Basel) 13 (2022) 184. https://doi.org/10.3390/mi13020184.
  42. B. Zhan, C. Li, J. Yang, G. Jenkins, W. Huang, X. Dong, Graphene Field‐Effect Transistor and Its Application for Electronic Sensing, Small 10 (2014) 4042–4065. https://doi.org/10.1002/smll.201400463.
  43. N. Yogeswaran, W.T. Navaraj, S. Gupta, F. Liu, V. Vinciguerra, L. Lorenzelli, R. Dahiya, Piezoelectric graphene field effect transistor pressure sensors for tactile sensing, Appl Phys Lett 113 (2018). https://doi.org/10.1063/1.5030545.
  44. M. Huang, Z. Li, H. Zhu, Recent Advances of Graphene and Related Materials in Artificial Intelligence, Advanced Intelligent Systems 4 (2022). https://doi.org/10.1002/aisy.202200077.
  45. B. G. Nassef, G. A. Nassef, M. A. Daha, Graphene and Its Industrial Applications: A Review, International Journal of Materials Engineering 10 (2020) 1–12. https://doi.org/10.5923/j.ijme.20201001.01.
  46. W. Kong, H. Kum, S.-H. Bae, J. Shim, H. Kim, L. Kong, Y. Meng, K. Wang, C. Kim, J. Kim, Path towards graphene commercialization from lab to market, Nat Nanotechnol 14 (2019) 927–938. https://doi.org/10.1038/s41565-019-0555-2.